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Fig. 1: Self-supervised Design of Paper Tools. Through trial-and-error, PaperBot autonomously learns how to design and
use paper tools directly in the real world. Given only 100 trials (≈ 3 hours), our fully autonomous system discovers a paper
airplane folding and throwing strategy that flew further than the best human design after the same number of trials (top), and
learns how to cut and actuate a kirigami gripper that exerts 0.93N of force (bottom), equivalent to the weight of over four
strawberries. For our system’s final design, please see Fig. 5.

Abstract—Paper is a recyclable1, affordable, and widely acces-
sible material, making it a popular medium for building practical
tools. Traditional tool design either relies on simulation or phys-
ical analysis, which is often inaccurate and time-consuming. In
this paper, we propose PaperBot, a framework that directly learns
to design a tool out of paper then use it in the real world. We
demonstrated the effectiveness and efficiency of PaperBot on two
tool design tasks: a) learning to fold and throw paper airplanes
for maximum travel distance, and b) learning to cut paper into
grippers that exert maximum gripping force. We present a self-
supervised learning framework that performs cutting, sequential-
folding, and dynamic throwing and actuation actions to discover
and optimize the design of paper tools. We deploy our system
to a real-world bi-manual robotic system to solve challenging
design tasks involving aerodynamics (paper airplane), friction
and deformation (paper gripper) that are difficult to simulate
accurately and efficiently with traditional tool design approaches.

1 All the paper used during experiments was properly recycled.

I. INTRODUCTION

If you wanted to fold this paper (yes, the sheet you are
reading) into an airplane that travels a maximum distance,
how would you do it? By experimenting with paper as a child,
you have learned multiple ways to cut and fold objects out of
paper. In this work, we aim to automate this iterative design,
deploy, and improve loop with machine learning methods in
order to create real-world tools using paper (see Fig. 1). Paper
is an attractive medium for design because it is an affordable,
recyclable, and versatile commodity that can be repurposed
and customized for different functions. Society has made many
different tools out of paper – ranging from filters and fans
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to packaging boxes and bowls, and it is beneficial to the
environment to make more. Robots could also create and use
its own paper tools for many applications, for example in
medical settings [8] where the cost of a paper end-effector
allows it to be discarded after use or in logistical settings where
paper vessels can be customized to each object.

Prior work in robotics has largely studied tool design in
the context of simulation [31, 14, 45, 49, 25], where a
reinforcement learning model learns the design of hardware
jointly with a policy to use the tool. Despite their impressive
results, these prior works typically assume an abundance of
data, which restricts their application to efficiently simulatable
physical phenomena (i.e, rigid objects). In contrast, paper are
deformable, thin-shell objects with relatively low elasticity
and high plasticity. Further, its applications typically involve
interaction with fluids and air, which are expensive to simulate
accurately. Instead of scaling up high-quality synthetic data,
how else could we approach automatic paper tool design?

In this paper, we introduce PaperBot, a robot system that
autonomously performs experiments in the real world in order
to learn the design of paper tools with different functions.
Given a reward function (such as travel distance or gripping
force), the system learns a series of cuts or folds in order to
create a paper tool that optimizes a reward. Our system finds
these solutions through experimentation and learning:

• An automation pipeline that creates tools from sam-
pled design parameters. We build a system composed of
bi-manual robot arms and several paper-related machines
including a Cricut machine to perform a sequence of
folding and cutting actions on paper. These actions are
composed of a set of learnable parameters.

• Automatic reward evaluation. We use various sensors,
including load cells and RGBD cameras to automatically
evaluate the effectiveness of a tool created from the afore-
mentioned automated pipeline and generate a reward.

• An optimization framework that learns to optimize
the design from trial-and-error. We use a neural
network as a surrogate model to learn the non-linear
correlation between design parameters and reward. Af-
ter training, optimal design parameters based on prior
experimental data are searched in the surrogate model’s
parameter space. We adopt an epsilon-greedy strategy to
search for the optimal parameters.

The optimization of the paper tool is driven by real-world
feedback and operates entirely in the physical world without
simulation and prior knowledge such as physical or material
properties, making it generalizable to different tasks. Our
approach learns strong designs with just 100 trials, requiring
less than 3 hours for both tasks we evaluate. Experiments
show that our learned design significantly outperforms base-
lines, including state-of-the-art methods based on evolutionary
algorithms.

A key advantage of PaperBot is its ability to automatically
adapt to new situations. In the real world, we often want
customized tools for specific task definitions, which are ex-
pensive and time consuming to create if we need to hand-

Fig. 2: Paper Tools. Paper is an affordable and versatile
medium for constructing a variety of different paper tools.

design every customization. PaperBot provides a viable way
to automate this customization process. Our experiments show
that the surrogate model trained on one task can quickly adapt
to different reward definitions.

The primary contribution of this paper is an approach for
real-world tool design using paper as a material, and the
rest of the paper will present and analyze this system in
detail. Section II provides a brief overview of related work.
Section III introduces the approach to solve the design tasks
of paper airplanes and kirigami grippers. Section IV provides
the experimental analysis of the system in terms of efficiency
of the learning algorithm and the effectiveness of the designed
tools. We believe the ability to perform real world tool design
will significantly improve robot’s ability to adapt and solve
various real world tasks.

II. RELATED WORK

A. Origami-Inspired Robot and Tool Design

The use of paper as a material in tool and robotic design
has been explored in various fields. For instance, altering
paper structures through cuts has been shown to modify
mechanical properties such as stiffness [20] and resonant
frequency [52]. Notably, these flat, 2D sheets can transform
into complex 3D shapes, offering diverse design possibili-
ties [21, 7, 30]. For example, kirigami structures have been
applied in optical tracking and enhancing solar panel power
generation by controlling their deformation [26]. Similarly,
origami principles have enabled the creation of transformable
wheels capable of bearing significant loads [27]. Moreover,
these deformable structures can imitate biological movements,
such as crawling [36] and aquatic swimming [54]. In more
conventional applications, paper has been made into robotic
manipulators [24, 22, 48] and grippers [28, 15, 16, 2, 23] for
specialized object handling.

Previous studies have underscored the potential of paper-
based designs, yet they typically require intricate human-
driven analysis for optimization. This is attributed to the
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Fig. 3: Approach Overview. Our framework samples paper designs for a tool, builds them, actuates a robot to perform on a
task with the tool, and perceives its performance. By learning a surrogate model to predict the utility of a design, we obtain
a differentiable model that allows us to solve inverse design tasks with gradient-based optimization. The above figure shows
how our framework applies to two design tasks of paper airplanes (top) and kirigami grippers (bottom).

inherent challenge in simulating complex deformations and
multiple buckling modes of thin-shell structures, making ac-
curate predictions difficult [35, 51, 34, 32]. The complexity
of accurately predicting these behaviors necessitates advanced
analysis and expertise.

B. Hardware-Software Co-Design

Real-world robots are often limited by their own mor-
phologies as well as other physical constraints, posing many
challenges when attempting to accomplish a task with policy
learning alone. Therefore in recent years, hardware-software
co-design has emerged as a field that studies how hardware
design can be jointly learned with policy to create better tools
for accomplishing certain tasks.

A line of work has explored solving manipulation tasks
relying on simulation environments [49, 25], including [45]
that optimizes the shape of end-effector and motion jointly
for dynamic planar manipulation. Other studies [55, 49, 17,
47, 18, 46] have investigated the hardware-software co-design
problem using modular locomotion robots with data-driven
approaches. With the rise of deep reinforcement learning and

GPU-based large-scale simulation, a line of work [38, 5, 31]
has focused on learning ”hardware-as-policy” in simulated
environments. These works highlight the importance of inte-
grating hardware and software in the design process. However,
all prior works have approached the problem in a simu-
lated environment, which is often hand-crafted for a specific
application and difficult to tune accurately. In this work,
we explore the possibility of learning hardware-software co-
design directly in the real world by using paper as a material.

C. Dynamic Manipulation of Deformable Objects

The manipulation of deformable objects, such as paper,
has been studied in the robotics and sciences community.
The two main approaches to learning to manipulate an object
are: model-based and model-free. In model-based works, a
dynamics model of the real-world object enables the agent to
simulate the outcomes of various forces acting upon the object
and use this model to choose the next action. This dynamics
model is either learned through particle-based dynamics net-
work [43, 44], or via a differentiable simulator [29, 19]. Such
approaches either require large amounts of training data due



Fig. 4: System Setup. We visualize the workspace of PaperBot while designing paper airplanes (a-c) and kirigami grippers
(d-e). (a) shows the full workspace, including two RealSense D435i cameras to measure travel distance over the runway. (b)
shows two xArm7s folding a paper airplane. (c) shows the sticky holders. (d) shows the xArm 7s retrieving a gripper cut by
the Cricut Maker 3 and actuating it. (e) shows load cells that we use to measure the force of the candidate gripper design.

to the requirement of explicitly modeling dynamics, or assume
good simulators.

In model-free approaches, the relationship between input ac-
tions and output states is learned through interaction, with the
dynamics of the interaction implicitly modeled. The concept of
transporter networks, crucial in the manipulation of complex
deformable objects, is investigated in [41, 42]. In dynamic
manipulation [12, 3, 6, 50], the action space is parameterized
for efficiently learning a mapping to the goal state. PaperBot
simultaneously learns to design and dynamically manipulate
a deformable object to achieve a goal state with a neural
surrogate model to learn the non-linear correlation between
design and manipulation parameters and reward through ex-
perimentation, then performing inverse design.

III. APPROACH

A. Inverse Design Framework

PaperBot is a self-supervised framework for learning to
design objects out of paper. Our approach performs real-world
experiments with paper (cutting, folding) and automatically
measures its performance on a task with a perception system.
Given a parameterization of the design (such as where to cut
or fold), we want to find a design z ∈ Z ⊂ RD that maximizes
the reward function:

z∗ = argmax
z

R(z) (1)

where the reward R(z) ∈ R is a perceivable quantity, such
as travel distance or amount of force and Z is a bounded
design parameter space. In real-world settings, calculating the
reward R requires building the paper tool, actuating a robot
to use it, and measuring the reward with a perception system,
i.e. R(z) = Perceive(Actuate(Build(z), z)). This process is
neither convex nor differentiable, which makes optimizing the
design challenging.

Our framework learns a differentiable surrogate model
fθ(zt), represented by a neural network parameterized by θ,
that is trained to predict the reward of a candidate design zt:

min
θ

Ezt [L (fθ(zt), rt)] for rt = R(zt) (2)

where zt is the design configuration sampled at iteration t and
L is the loss function. When sampling a new zt+1, we use a
ϵ-greedy sampling strategy in order balance exploration and
exploitation in the design space:

zt+1 =

{
argmaxz fθ(z) with probability 1− ϵ

z ∼ U with probability ϵ
(3)

where U is a uniform distribution over Z .
After a sufficient number of trials (we found 100 trials to

be reasonable), the final design can be estimated with gradient
descent by solving:

ẑ = argmax
z

fθ(z) (4)
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Fig. 5: Parameterization and Learning Process. Left shows the parameterization of the tools. Right shows the intermediate
designs during the learning process as well as the best human-fold plane and adapted gripper designs for smaller and larger
objects. These iterations correspond to the teaser figure. See Fig. 1 for the actual performance of these designs.

which approximates the optimal design z∗ in Equation 1.
In this work, we instantiate this framework on two paper

design tasks: building paper airplanes that maximize their
travel distance, and building kirigami grippers that exert a
desired gripping force. In the remainder of this section, we
describe how we apply this framework to these two tasks.

B. Paper Airplane

We first consider the design of a paper airplane that trav-
els a maximum distance. Prior works have explored similar
tasks [33, 37] for different purposes, but here we use it as a
motivating task for paper tool design as it involves a sequence
of folding and throwing action as well as the interaction
between deformable object and air, which is notably difficult
to simulate.

Task Configuration. The objective of the task is to fold and
throw a paper airplane that maximizes the flying distance. The
workspace is a 9m x 1.5m runway with curtains and wall on
the side to prevent plane from deviating. A carpet was placed
on the ground to prevent a paper airplane from sliding upon
landing. We use the letter-size printer paper (216mm×279mm)
with 75g/mm2 as material. The distance traveled by the plane
is monitored by two RealSense D435i cameras mounted on the
ceiling looking down with enough field of view to cover the
entire runway.

Design and Action Space. The parameter space of the
task is composed of 4 plane design parameters as described
in Fig. 5. We also learn 1 dynamic manipulation parameter
of the throwing motion. Parameters 1 and 2 define the left
fold position and orientation and parameters 3 and 4 define
the right fold position and orientation. Parameters 5 is the
throwing angle of the robot arm defined by when the gripper
is released while the robot arm performs the throwing motion.

Automation. We automate paper airplane folding with two
xArm 7 robot arms, one equipped with a parallel gripper
and the other equipped with a 3D-printed soft presser tool
and a suction cup. During folding, the corner of the paper is
grasped by the parallel gripper and moved to the parameterized
position, and the other arm will press down along the crease.
The soft design of the presser tool exempts us from impedance
control and did not fail once during more than a thousand trials
we have run. To robustly load a single page of paper, we used
a cheap inkjet printer that prints a blank page. To simplify the
problem, after two folds, a 3D printed holder with pre-applied
double-sided tape at the bottom is used to stick to the paper
as a grasping point for throwing.

The pipeline for folding and throwing a paper airplane is
fully automated without any human intervention. Each trial
takes around 100 seconds, allowing 100 trials to be performed
within 3 hours.

C. Kirigami Gripper

Kirigami grippers are inspired by the traditional art of paper
cutting and folding, and they have recently been shown to be a
novel approach for grasping in robotics [53]. Constructed from
a single flat sheet, these grippers are not only cost-effective and
lightweight but also environmentally friendly, making them
ideal for a variety of object grasping tasks in dynamic and
unstructured environments [15, 16, 2, 23]. Nevertheless, the
analysis and simulation of kirigami grippers pose significant
challenges due to their complex behavior, including multiple
buckling modes and reconfigurations upon contact with ob-
jects [4, 1]. This complexity requires sophisticated analysis
and human expertise for kirigami gripper design in current
methodologies. To resolve this, we propose to directly learn
a surrogate model through experimentation in the real world



Algorithm 1: ϵ-Greedy Tool Design Optimization
Input: Neural network f with parameters θ and

initialization σ, automation pipeline R, explore
probability ϵ, loss function L, number of total
trials T , optimization step sizes λz, λθ, number
of iterations N , M

Output: Estimated design parameters ẑ
for i = 1, . . . , T do

if rand() ≤ ϵ then
z0 ← randomly sampled design parameters
{z}i = {z}i−1 ∪ z0
{r}i = {r}i−1 ∪R(z0)

else
θ0 ∼ N (0, σ)
// Fitting surrogate model with data

for j = 1, . . . , N do
B ← sample mini-batch from {z}i, {r}i
L←

∑
z,r∈B L

(
fθj−1

(z), r
)

θj ← θj−1 − λθ
∂

∂θj−1
L

end
// Inverse design

z0 ← randomly sampled design parameters
for j = 1, . . . ,M do

zj ← zj−1 + λz
∂

∂zj−1
fθN (zj−1)

end
{z}i = {z}i−1 ∪ zM
{r}i = {r}i−1 ∪R(zM )

end
end
t∗ ← argmax {r}T
return zt∗

and invert it for design.
Task Configuration. The objective of this task is to design a

gripper that exerts maximum gripping force for a given object
geometry. The created gripper is placed on top of a measuring
device with two parallel load cells measuring the horizontal
gripping force exerted on each side of the gripper. A sequence
of 240 measurements (80 Hz × 3s) is collected and applied
with median filtering with a window size of 5. The peak value
among a 10-step moving average is taken as the maximum
force exerted by the Kirigami gripper. A sublimation paper
(120 gsm) is used as the material2.

Design and Action Space. For simplicity and practicality,
we keep the size of each gripper at 3x3 inches. We use 4
parameters to control the design of the gripper as described in
Fig. 5. This parameterization is functionally equivalent to the
original design in [53], but more convenient for cutting. We
limit the parameter space so that the cuts do not cross each
other and do not get too close to the edge of the paper. Please
see the detailed parameterization in Fig. 5.

Automation. We use a Cricut Maker 3 machine, which takes

2https://a.co/d/2WK65p7

0 20 40 60 80 100
Number of Trials

0

1

2

3

4

5

6

Di
st

an
ce

 (m
et

er
)

Farthest Distance Reached

Ours
Random
Grid Search
SNES
Human

(a) Paper Airplane

20 40 60 80 100
Number of Trials

0

200

400

600

800

Fo
rc

e 
(1

e-
3 

N)

Biggest Force Reached

Ours
Random
Grid Search
SNES

(b) Kirigami Gripper

Fig. 6: Performance of paper airplanes (top) and kirigami
grippers (bottom) per optimization iteration, designed by our
method (blue) versus baselines.

a PNG image of the designed gripper and cuts a sheet of paper
into the exact shape. The cut gripper is placed to the force-
measuring device shown in Fig. 4. Two xArm 7s with parallel
grippers grasp the two opposite corners of the gripper and pull
towards the opposite direction with 10mm/s speed for 30mm,
during which both sides of the gripper press against the load
cells. Different-sized 3D printed objects are mounted at the
end of the load cells to mimic different-sized objects during
adaptation experiments.

D. Design Optimization

After automating the construction and perception of the
reward, we want to find a design z that maximizes the reward
function R for a task. We simultaneously learn a surrogate
model fθ(z) and optimize designs against it.

Learning the Surrogate Model. We instantiate the sur-
rogate model f as a 4-layer MLP with an input dimension
matching the corresponding parameter space, hidden dimen-
sions of 512, and an scalar output for reward. Given a dataset
of pairs of input design parameters and output reward, we train
the network for 1000 iterations with a batch size of 8. We use
an AdamW optimizer with learning rate of 0.01 and weight
decay of 0.1 to optimize for the Huber loss (smoothed L1 loss)
between the predicted reward and ground truth.

Since we are operating in the real world, which is expensive

https://a.co/d/2WK65p7
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Fig. 8: Paper Airplanes Landing Positions. We visualize
the top-down paper airplane mask over the course of training.
Compared to SNES, PaperBot was able to better balance
exploration and exploitation, escaping the local minima at
around 2.5 meters, and eventually beating the human baseline.

in terms of time and resources, we cannot afford to massively
randomly sample design parameters as training data for the
surrogate model. For this, we adopt an ϵ-greedy exploration
strategy. At each iteration, there is an ϵ probability that we

Adapted Design

Small Objects (1.5cm)

Adaptation Design

Large Objects (8.0cm)Original Design

Fig. 9: Adapted Grippers Under Actuation. Changing the
distance between load cells changes where gripping force
is measured, and thus, the optimal bending point for the
gripper designs. Given only 50 adaptation trials, PaperBot
discovered subtle design changes which significantly impacted
the mechanical structure of the paper, leading to grippers
tailored to different object sizes.

Small (1.5cm) Large (8cm)

Original (optimized for 5cm) 0.302± 0.012 0.055± 0.027
Adapted Gripper 0.442± 0.080 1.131± 0.235

TABLE I: Force measurement of original gripper optimized for
grasping 5cm-sized objects compared with adapted grippers
optimized for different object sizes.

will perform random exploration, and otherwise, we perform
a greedy search by finding the best design parameters defined
by the neural surrogate model. Please see Algorithm 1 for a
detailed description.

Inverse Design. Once the surrogate model is trained, we
randomly sample a set of initial design parameters z and
perform gradient-descent on Equation 4. During each iteration,
we calculate z ← z + λ δfθ(z)

δz for a scalar step size λ ∈ R,
which can be efficiently computed with back-propagation.
The gradient contains information regarding which directions
to change the design parameters to increase the reward. If
the gradient update causes z to deviate outside of physically
feasible actions (such as cutting off the paper surface), we
project z back to the nearest feasible region.

Because the surrogate model training and inverse design
combined take less than 2 seconds on an NVIDIA RTX
3090 GPU, far from being the bottleneck during experiments,
we perform these two steps before each trial as detailed in
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Fig. 10: Grasping with Adapted Gripper Design. We compare the grasping process of our gripper design before adaptation
and after adaptation for larger and smaller objects. Note that the “before adaptation” gripper is optimized for 5cm objects.

Algorithm 1.
It is worth mentioning that evolutionary algorithms [11, 10,

39, 9, 13] is another class of algorithms that also attempts to
address the problem of gradient-free non-convex optimization.
However, this class of methods is known to be sample-
inefficient thus is not feasible in our real-world setting. We
show the experimental comparison in section IV-A.

IV. EVALUATION

The goal of this section is to systematically evaluate our
system with both quantitative and qualitative analysis. In
section IV-A, we compare our method against several baselines
to validate the effectiveness and efficiency of our optimization
algorithm. In section IV-B, we show the effect of increasing
the size of parameter space on ours and baseline methods.
In section IV-C, we show how our pre-trained model in one
environment can adapt to a new environment with much less
data. Finally, in section IV-D, we show applications of our
optimized tool design.

A. Quantitative Experiments

Baselines. For both tasks, we selected several baselines for
comparison.

• Grid Search: A typical approach for parameter optimiza-
tion is grid search. Given 100 trials as a budget, we used
5-5-4 for 3-parameter problems, 3-3-3-4 for 4-parameter
problems, and 3-3-3-2-2 for 5-parameter problems.

• Random Sampling: We perform random sampling of
design parameters for each trial. Random and grid search
provide a holistic view of the design problems’ difficulty.

• SNES [40]: Evolutionary algorithms are common choices
for solving gradient-free non-convex optimization prob-
lems. It has also been used in prior works for tool
design based on simulation. We ran the algorithm with
a population size of 5 for 20 iterations. We adopted the
implementation provided by EvoTorch.

Paper Airplane. In the paper airplane task, as shown in
Fig. 6, our approach significantly outperforms other baselines
by a large margin, outperforming the second best baseline,
SNES, by 87%.

To further understand the results, we visualize the landing
positions of all folded paper airplanes during all experiment
runs. This is collected by the ceiling-mounted RealSense cam-
eras. The masks of planes of all trials are combined to visualize
the distances traveled in Fig. 8. In both grid search and random
exploration experiments, the majority of the folded paper
airplanes landed near the origin, and overall show similar
distance distribution. In SNES [40], most of the planes landed
between 2.5-3.5 meters, while in comparison, our method
quickly breaks out of that region and reaches further and
further distances. During experiments, we observed that the
evolutionary algorithm can quickly learn the throwing angle,
which has the highest correlation with the travel distance and
is relatively orthogonal to other design parameters. However,
during the 100 trials, SNES struggled to find good folding

https://evotorch.ai/


Fig. 11: Grasping of everyday objects using the optimized gripper design. We used the grippers with a design optimized
by our method to perform grasping of objects with various sizes, surface materials, weights, and rigidity, as well as fresh fruits
as shown in the bottom row.

parameters, which are necessary for folding a paper airplane
that flies further than 3.5 meters. This explains what we see
in the visualization and shows that our method is significantly
more sample-efficient than evolutionary algorithm for this
problem in a low-data setting.

Kirigami Gripper. For the kirigami gripper design task, we
adopted the same set of baselines. We optimize the 4 design
parameters as shown in Fig. 5. Similar to the paper airplane
task, our method outperforms the second-best baseline – SNES
by a large margin of 36.4%. Our best-designed gripper can
exert a gripping force equivalent to the gravity of 92.8g, which
is more than the weight of four strawberries.

B. Size of Design Space

Since real-world tools are complicated and contain many
design parameters, we want to understand the scaling perfor-
mance of different methods against the number of parameters.
To investigate this, we perform an ablation study on the
paper airplane task. We run our experiments to learn 3 and
5 parameters independently. For the 3 parameter experiments,
we cut the two parameters governing the right fold, and

replaced them with the parameters of the left fold, enforcing
a symmetry of wing angles to every plane – reducing the
complexity of the design task.

As shown in figure 7, the performance of baseline methods
drops significantly as the number of learnable parameters
increases. All of these methods struggle to learn to fold
symmetrically, which causes most of the folded planes to crash
on the side. However, for our method, even though the rate of
learning in the 5-parameter experiment is much slower than
the 3-parameter one, it eventually found a better design. We
observed that this is because our enforced symmetry does
not guarantee the plane travel in a straight line due to both
calibration precision and environmental influence (such as
small airflow on the paper runway). When given 5 learnable
parameters, our method can discover a slightly asymmetric
design that counteracts the systematic asymmetry, allowing
the plane to travel in a straight line to the furthest distance.

C. Adaptation of Kirigami Gripper to Different Objects

Since the entire learning process happens in the real world
and we do not assume prior knowledge about the physical
world, our system is highly adaptive. In the kirigami gripper



design task, we conduct experiments where we vary the
distance between the load cells to mimic objects of different
sizes. In these experiments, we initialized the parameters of the
neural surrogate model with pretrained weights from previous
experiments conducted on a different object size. With fewer
experiments (50 trials), our method can quickly adapt its
design for different object sizes.

Table I shows the force measurement of the original gripper
vs. adapted gripper exerted on new objects. For the small
object experiment, the adapted gripper exerts 46% more grip-
ping force than before. For larger objects, the adapted gripper
obtains a more than 20-fold increase in gripping force.

The effect of adaptation of gripper design can be qualita-
tively seen in Fig. 9, where we mount different grippers on
a parallel robot gripper and actuate with the same stretching
distances. The difference in design changes the mechanical
structure of the paper during its deformation, causing it to
enclose objects of different sizes much better. This effect
directly causes the success rate of grasping objects of different
sizes as shown in Fig. 10, illustrating the importance of
customization. These experiments showcase the advantage of
our method to quickly adapt to different reward definitions
and potentially different environmental conditions. It has also
shown that prior knowledge obtained from a related task with
a shared structure can be effectively transferred to improve
sample efficiency.

D. Grasping with Designed Gripper
In Fig. 11, the robot performs grasping on a variety of

objects with different sizes and geometry to showcase the
effectiveness of the emergent gripper design. In each example,
we mount the kirigami gripper on a normal robot parallel
gripper using a 3D printer tool and perform a predefined prim-
itive grasping action. These objects include small, high-density
objects such as the metal nut, as well as large objects with a
smooth slippery surface such as the box, highlighting that our
optimized design can exert high gripping force for grasping.
The bottom row shows our designed gripper grasping various
fruits, which motivates paper as a material for making cheap,
clean, recyclable, and customizable grippers for handling food.

V. CONCLUSION

Paper is an affordable and versatile medium that can be used
to construct many different types of tools. We demonstrated
PaperBot, a system that autonomously performs experiments
to simultaneously learn the a) design and b) use of paper tools
for different tasks. Without requiring a simulator, experiments
show that our approach is able to learn to design, build, and
use real-world paper tools in just a few hours. Our system is
reproducible in any robotics research lab and we will open-
source all software, hardware, models, and data.
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Robotic automation and unsupervised cluster assisted
modeling for solving the forward and reverse design
problem of paper airplanes. Scientific Reports, 13(1),
Mar 2023. doi: 10.1038/s41598-023-31395-0. 5

[34] Nikhil Padhye and Subodh Kalia. Isogeometric anal-
ysis of elastic sheets exhibiting combined bending and
stretching using dynamic relaxation. arXiv preprint
arXiv:2206.10406, 2022. 3

[35] Chuan Qiao, Lu Liu, and Damiano Pasini. Elastic
thin shells with large axisymmetric imperfection: From
bifurcation to snap-through buckling. Journal of the
Mechanics and Physics of Solids, 141:103959, 2020. 3

[36] Ahmad Rafsanjani, Yuerou Zhang, Bangyuan Liu,
Shmuel M Rubinstein, and Katia Bertoldi. Kirigami skins
make a simple soft actuator crawl. Science Robotics, 3
(15):eaar7555, 2018. 2

[37] ABB Robotics, Sep 2015. URL https://www.youtube.
com/watch?v=KWmTX9QotGk. 5

[38] Charles Schaff, David Yunis, Ayan Chakrabarti, and
Matthew R Walter. Jointly learning to construct and con-
trol agents using deep reinforcement learning. In 2019
International Conference on Robotics and Automation
(ICRA), pages 9798–9805. IEEE, 2019. 3

[39] Tom Schaul, Tobias Glasmachers, and Jürgen Schmid-
huber. High dimensions and heavy tails for natural
evolution strategies. In Proceedings of the 13th annual
conference on Genetic and evolutionary computation,
pages 845–852, 2011. 8

[40] Tom Schaul, Tobias Glasmachers, and Jürgen Schmid-
huber. High dimensions and heavy tails for natural

https://www.youtube.com/watch?v=KWmTX9QotGk
https://www.youtube.com/watch?v=KWmTX9QotGk


evolution strategies. In Proceedings of the 13th Annual
Conference on Genetic and Evolutionary Computation,
GECCO ’11, page 845–852, New York, NY, USA,
2011. Association for Computing Machinery. ISBN
9781450305570. doi: 10.1145/2001576.2001692. URL
https://doi.org/10.1145/2001576.2001692. 8

[41] Daniel Seita, Pete Florence, Jonathan Tompson, Erwin
Coumans, Vikas Sindhwani, Ken Goldberg, and Andy
Zeng. Learning to rearrange deformable cables, fabrics,
and bags with goal-conditioned transporter networks. In
2021 IEEE International Conference on Robotics and
Automation (ICRA), pages 4568–4575. IEEE, 2021. 4

[42] Daniel Seita, Pete Florence, Jonathan Tompson, Erwin
Coumans, Vikas Sindhwani, Ken Goldberg, and Andy
Zeng. Learning to rearrange deformable cables, fabrics,
and bags with goal-conditioned transporter networks,
2023. 4

[43] Haochen Shi, Huazhe Xu, Zhiao Huang, Yunzhu Li, and
Jiajun Wu. Robocraft: Learning to see, simulate, and
shape elasto-plastic objects with graph networks. arXiv
preprint arXiv:2205.02909, 2022. 3

[44] Haochen Shi, Huazhe Xu, Samuel Clarke, Yunzhu Li,
and Jiajun Wu. Robocook: Long-horizon elasto-plastic
object manipulation with diverse tools. arXiv preprint
arXiv:2306.14447, 2023. 3

[45] Orion Taylor and Alberto Rodriguez. Optimal shape
and motion planning for dynamic planar manipulation.
Autonomous Robots, 43:327–344, 2019. 2, 3

[46] Tsun-Hsuan Wang, Juntian Zheng, Pingchuan Ma, Yilun
Du, Byungchul Kim, Andrew Spielberg, Joshua Tenen-
baum, Chuang Gan, and Daniela Rus. Diffusebot: Breed-
ing soft robots with physics-augmented generative diffu-
sion models. arXiv preprint arXiv:2311.17053, 2023. 3

[47] Julian Whitman, Raunaq Bhirangi, Matthew Travers, and
Howie Choset. Modular robot design synthesis with
deep reinforcement learning. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 34, pages
10418–10425, 2020. 3

[48] Shuai Wu, Qiji Ze, Jize Dai, Nupur Udipi, Glaucio H
Paulino, and Ruike Zhao. Stretchable origami robotic
arm with omnidirectional bending and twisting. Pro-
ceedings of the National Academy of Sciences, 118(36):
e2110023118, 2021. 2

[49] Jie Xu, Andrew Spielberg, Allan Zhao, Daniela Rus, and
Wojciech Matusik. Multi-objective graph heuristic search
for terrestrial robot design. In 2021 IEEE international
conference on robotics and automation (ICRA), pages
9863–9869. IEEE, 2021. 2, 3

[50] Zhenjia Xu, Cheng Chi, Benjamin Burchfiel, Eric
Cousineau, Siyuan Feng, and Shuran Song. Dextairity:
Deformable manipulation can be a breeze. arXiv preprint
arXiv:2203.01197, 2022. 4

[51] Kshitij Kumar Yadav, Nicholas L Cuccia, Emmanuel
Virot, Shmuel M Rubinstein, and Simos Gerasimidis.
A nondestructive technique for the evaluation of thin
cylindrical shells’ axial buckling capacity. Journal of

Applied Mechanics, 88(5):051003, 2021. 3
[52] Wenzhong Yan and Ankur Mehta. A cut-and-fold self-

sustained compliant oscillator for autonomous actuation
of origami-inspired robots. Soft Robotics, 9(5):871–881,
2022. 2

[53] Yi Yang, Katherine Vella, and Douglas P. Holmes.
Grasping with kirigami shells. Science Robotics,
6(54):eabd6426, 2021. doi: 10.1126/scirobotics.
abd6426. URL https://www.science.org/doi/abs/10.1126/
scirobotics.abd6426. 5, 6

[54] Qiji Ze, Shuai Wu, Jize Dai, Sophie Leanza, Gentaro
Ikeda, Phillip C Yang, Gianluca Iaccarino, and Ruike Re-
nee Zhao. Spinning-enabled wireless amphibious origami
millirobot. Nature communications, 13(1):3118, 2022. 2

[55] Allan Zhao, Jie Xu, Mina Konaković-Luković, Josephine
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